Mining Frequent Patterns, Association & Correlation

Part I: Basic Concepts

Hui Yang
Department of Computer Science
San Francisco State University
http://cose-stor.sfsu.edu/~huiyang
Outline

• Basic concepts
• 3 major mining algorithms to discover frequent association patterns
• Mining various types of association patterns
• From association mining to correlation analysis
• Constraint-based association mining
• Summary
What Is Frequent Pattern Analysis?

- The process of identifying frequent patterns in a dataset and applying such patterns to address a variety of issues.
 - **Frequent pattern**: a pattern that occurs *frequently* in a data set. A pattern can be a set of items, an ordered sequence of items, or a substructure.
 - *First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining*

Examples of frequent patterns

- *What products were often purchased together?*
 - *(Beer, diapers), (bread, butter, milk)*
- *What are the subsequent purchases after buying a PC?*
 - *Customers often buy MS Office Software within 10 days after they buy a PC.*
- *What sub-structures of amino acids are frequently appearing in proteins?*
Basic Concepts: Association Patterns and Association Rules

- **Given:**
 - \(\text{DB} \): a transactional database of \(n \) transactions: \(T_1, T_2, \ldots, T_n \),
 - \(I \): the set of unique items in \(\text{DB} \)
 - \(T_i \subseteq I \)
 - Ex: 5 TXs, \(I=\{A,B,C,D,E,F\} \)

- **Itemsets (or association sets)**
 - \(S = \{s_1, \ldots, s_k\} \), where \(S \subseteq I \)
 - \(S \) is often called a \(k \)-itemset
 - Ex: \{D\}, \{A,B\}, \{A,B,D\}, \{A,B,D,E,F\}
 - Implication: \{A,B\}--customers purchase A and B together

- **Association rules**
 - \(X \rightarrow Y \), where \(X, Y \subseteq I \) and \(X \cap Y = \emptyset \)
 - \(\text{Reads: } X \text{ implies } Y \), or “the chance that } Y \text{ occurs given that } X \text{ occurs”}
 - \(X \): the antecedent, \(Y \): the precedent
 - Ex: \(AB \rightarrow C, CDE \rightarrow B \)
Measuring Association Patterns and Association Rules

- Itemset \(S = \{s_1, \ldots, s_k\} \)
 - **Support**: the probability that a transaction contains \(S \);
 - Equivalently, the number or percentage of transactions that contain \(S \)
 - Ex: \(\text{supp}(A) = 3 \), \(\text{supp}(D)=4 \), \(\text{supp}(BCD) = 1 \)

- Association rule \(X \rightarrow Y \)
 - **Support**: \(\text{support}(X \cap Y) \)
 - **Confidence**, \(c \), conditional probability that a transaction having \(X \) also contains \(Y \)
 - \(\text{conf}(AB \rightarrow C)=\text{supp}(A,B,C)/\text{supp}(AB) \)
 - Example:
 - \(A \rightarrow D \) (3, 100%) \(\text{(conf}=3/3=100\%) \)
 - \(D \rightarrow A \) (3, 75%) \(\text{(conf}=3/4=75\%) \)

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, D</td>
</tr>
<tr>
<td>20</td>
<td>A, C, D</td>
</tr>
<tr>
<td>30</td>
<td>A, D, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
<tr>
<td>50</td>
<td>B, C, D, E, F</td>
</tr>
</tbody>
</table>

Customer buys both

Customer buys diaper

Customer buys beer

Customer bears beer

B, E, F 40
B, C, D, E, F 50
A, D, E 30
A, C, D 20
A, B, D 10
Mining Frequent Association Patterns

- **Given:**
 - DB: a transactional database of \(n \) transactions: \(T_1, T_2, \ldots, T_n \)
 - I: the set of unique items in DB
 - **User-specified parameters:** minimum support (\(\text{Supp}_{\text{min}} \)), minimum confidence (\(\text{Conf}_{\text{min}} \))

- **Output:**
 - The set of A.R.s that have support \(\geq \text{Supp}_{\text{min}} \) (and confidence \(\geq \text{Conf}_{\text{min}} \))

- **Example:**
 - Let \(\text{Supp}_{\text{min}} = 3 \), \(\text{Conf}_{\text{min}} = 50\% \)
 - Frequent itemsets
 - \{A:3, B:3, D:4, E:3, AD:3\}
 - Freq. association rules:
 - \(A \rightarrow D \) (60\%, 100\%)
 - \(D \rightarrow A \) (60\%, 75\%)

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, D</td>
</tr>
<tr>
<td>20</td>
<td>A, C, D</td>
</tr>
<tr>
<td>30</td>
<td>A, D, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
<tr>
<td>50</td>
<td>B, C, D, E, F</td>
</tr>
</tbody>
</table>
Why Frequent Pattern Analysis?

• Disclose inherent regularities (or correlations) in data
 – *What products were often purchased together?— Beer and diapers?!*
 – *What are the subsequent purchases after buying a PC?*

• Address issues in different applications
 – *Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.*

• Form the foundation of many essential data mining tasks
 – *Pattern analysis in spatiotemporal, multimedia, and stream data*
 – *Classification: associative classification*
 – *Cluster analysis: frequent pattern-based clustering*
 – *Information retrieval: frequent pattern-based approximate indexing*
 – *Semantic data compression (or summarization)*
Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of sub-patterns, e.g., \{a_1, \ldots, a_{100}\} contains \(_{100}^1 + \(_{100}^2 + \ldots + \(_{100}^{100}\) = 2^{100} – 1 = 1.27 \times 10^{30}\) sub-patterns!

• Solution: Mine closed patterns and max-patterns instead

• An itemset \(X\) is closed if \(X\) is frequent and there exists no super-pattern \(Y \supset X\), with the same support as \(X\) (proposed by Pasquier, et al. @ ICDT’99)

• An itemset \(X\) is a max-pattern if \(X\) is frequent and there exists no frequent super-pattern \(Y \supset X\) (proposed by Bayardo @ SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns
 – Reducing the # of patterns and rules
Closed Patterns and Max-Patterns

• Exercise. DB = \{<a_1, \ldots, a_{100}>, < a_1, \ldots, a_{50} >\}
 – \text{Supp}_{\text{min}} = 1

• What is the set of closed itemset?
 – <a_1, \ldots, a_{100}>: 1
 – < a_1, \ldots, a_{50} >: 2

• What is the set of max-pattern?
 – <a_1, \ldots, a_{100}>: 1

• What is the set of all patterns?
 – !!
Freq. Association Patterns: A Main Property

- The **downward closure** (or anti-monotonicity) property of frequent patterns (also:)
 - Any subset of a frequent itemset must be frequent
 - If \{\text{beer, diaper, nuts}\} is frequent, so is \{\text{beer, diaper}\}
 i.e., every transaction having \{\text{beer, diaper, nuts}\} also contains \{\text{beer, diaper}\}
 - Conversely: If an itemset is not frequent, none of its supersets will be frequent.
 - (\text{beer, diaper}) is not freq.⇒(\text{beer,diaper,nuts}) is not freq.

- Scalable mining methods: 3 major approaches
 - Apriori \((Agrawal & Srikant@VLDB’94)\)
 - Freq. pattern growth \((FPgrowth—Han, Pei & Yin @SIGMOD’00)\)
 - Vertical data format approach \((Charm—Zaki & Hsiao @SDM’02)\)